A Domain Adaptation Regularization for Denoising Autoencoders

نویسندگان

  • Stéphane Clinchant
  • Gabriela Csurka
  • Boris Chidlovskii
چکیده

Finding domain invariant features is critical for successful domain adaptation and transfer learning. However, in the case of unsupervised adaptation, there is a significant risk of overfitting on source training data. Recently, a regularization for domain adaptation was proposed for deep models by (Ganin and Lempitsky, 2015). We build on their work by suggesting a more appropriate regularization for denoising autoencoders. Our model remains unsupervised and can be computed in a closed form. On standard text classification adaptation tasks, our approach yields the state of the art results, with an important reduction of the learning cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation

Domain adaptation, which aims to learn domain-invariant features for sentiment classification, has received increasing attention. The underlying rationality of domain adaptation is that the involved domains share some common latent factors. Recently neural network based on Stacked Denoising Auto-Encoders (SDA) and its marginalized version (mSDA) have shown promising results on learning domain-i...

متن کامل

Marginalized Stacked Denoising Autoencoders

Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...

متن کامل

Analyzing noise in autoencoders and deep networks

Autoencoders have emerged as a useful framework for unsupervised learning of internal representations, and a wide variety of apparently conceptually disparate regularization techniques have been proposed to generate useful features. Here we extend existing denoising autoencoders to additionally inject noise before the nonlinearity, and at the hidden unit activations. We show that a wide variety...

متن کامل

Fast Easy Unsupervised Domain Adaptation with Marginalized Structured Dropout

[1] John Blitzer et al. Domain Adaptation with Structural Correspondence Learning. In EMNLP’06. [2] Xavier Glorot et al. Domain Adaptation for Large-Scale Sentiment ClassiïňĄcation: A Deep Learning Approach. In ICML ’11 [3] Minmin Chen et al. Marginalized Denoising Autoencoders for Domain Adaptation. In ICML ’12 ACKNOWLEDGMENTS This research was supported by National Science Foundation award 13...

متن کامل

Spectral Bisection Tree Guided Deep Adaptive Exemplar Autoencoder for Unsupervised Domain Adaptation

Learning with limited labeled data is always a challenge in AI problems, and one of promising ways is transferring wellestablished source domain knowledge to the target domain, i.e., domain adaptation. In this paper, we extend the deep representation learning to domain adaptation scenario, and propose a novel deep model called “Deep Adaptive Exemplar AutoEncoder (DAE)”. Different from conventio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016